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Delayed stochastic differential model for quiet standing
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A physiological quiet standing model, described by a delayed differential equation, subject to a white noise
perturbation, is proposed to study the postural control system of human beings. It has been found that the white
noise destabilizes the equilibrium state, and inertia accelerates the destabilizing process, and that the position
of a person is detected and processed by the person’s nervous system with a delay. This paper focuses on the
analysis of Hopf bifurcation and its stability in this context. Based on the analytical predictions confirmed by
numerical simulations, it has been shown that the posture of a person is controlled in such a way that possible
amplitude oscillations are minimized.
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[. INTRODUCTION shown that the form of the autocorrelation function for the
pinned polymer model is similar to the functi@{At), char-
Standing quietly appears to the eye as a simple matter aicterized by the three indicated regimes. Thus, the behavior
being inert or at rest. However, precise measurements reveaf the highly evolved and complicated human postural con-
that it actually involves complex dynamical motions, which trol system can be simply, yet realistically, described by a
are too small for the eye to see. Thus the simple act ofinear system. This model is also suitable for studying a per-
standing is revealed to be a complex control problem, inturbed human postural control syst¢d). The work of Ohira
volving both physiological and psychological processes. Reand Milton[3] has shown that human postural control can be
cent studies on quiet standing posture experimental dataescribed by an even simpler model—delayed random
measuring the trajectory of the center of presg@®P un-  walks. Delay means a walker moves to the left or right, say,
der the feet of quietly standing subjects, show that the bebased on the walker’s position at some previous times. This
havior of young healthy subjects is like colored ndi&é It model is based on the natural delay in the nervous active
has been found that the two-point autocorrelation function irprocess, and the behavior of the COP is like colored noise.
the anteroposterioffront-to-back direction, y, defined by The dynamical behavior of the resulting model also agrees
C(At)={(y(t)—y(t—At))?) is proportional to QAt)?H,  with the characteristi¢cshapg of function C(At).
where the value oH defines three different dynamic re-  Why doesC(At) exhibit such a shape? What advantages
gimes: would a person get from the behavior implied by its shape?
To our knowledge, no publications have addressed such
>0.5 for O<At<At, questions. To answer them, we propose a simplified physi-
ological model in this paper, utilizing a delayed stochastic
Hy <05 for At,<At<At, nor?linear differential e(;)uzftion. ’ g
~0.0 for At>At,, Section Il presents the model. Section Il considers Hopf
bifurcation and its stability conditions. Discussions and con-
where At; and At, are observed values. One can use theclusions are given in Sec. IV.
values ofH to determine whether or not the analyzed data
are correlated. For example, a classical random walk corre-
sponds toH=0.5, whileH>0.5 andH < 0.5 indicate posi-
tive and negative correlations, respectivéll]. From the A rough description of quiet standing process will help
control point of view, these observations suggest that quietonstruct a model. Imagine a person standing still in a quiet
standing posture may thus be explained as follows: withirstable state, and then consider some disturbances leading to
some time(e.g., the subject’s reaction timemall deviations some very complicated perturbations. Some natural distur-
grow, and are suppressed by a negative feedback on largeances would be the beating of a person’s heart, the contrac-
time scale. tion of the stomach, etc. Such perturbations would cause the
Experimental models have been proposed to study quigierson’s position to move away from the original stable
standing, and in particular, a similar shape of the functionequilibrium. When the initial displacement is too small for
C(At) has been obtained by adjusting parameters in théhe person to feel, no adjustment to posture happens. How-
models proposed in Reff2,3]. Chow and Collind2] used ever, as the displacement grows, due to the inertia and the
the transverse motion of an elastically pinned polymer tdoss of stability of the gravity center, the displacement is
simulate human postural movements. This model can be deventually detected and the nervous system reacts to stabilize
scribed by a driven stochastic partial differential equationthe person’s body. The process is like this: equilibrisima
when the polymer is perturbed by a noise forcing function.perturbation— growing deviation— nervous system re-
The noise is colored but its correlation is so simple that thesponse— correction — equilibrium — new perturbation
differential equation can be treated analytically. It has been- - - -. Therefore, we may build our model with three parts:

1. MODEL
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(1) the positive feedback of the mechanical bod®) the -6.0 ‘ -
negative feedback of the conscious control; &)cthe noise a=1592
(perturbation. More detailed descriptions of the three parts ~ ~*°f
are given below.

(1) The mechanics of a human body is often described as
an inverted linear pendulurfb,6]. Let x(t) represent the 75t
transverse displacement of the gravity center of the pendu-~
lum at timet, and suppose&(t)<I, the length of the pendu-
lum. Then we may write the following differential equation:

10g,,C (At

X(t)=ax(t),

where a~+mgl/i2l, mg and| are the weight and the mo-
ment of inertia of the pendulum, respectively. For example,
if 1=170 cm, thena~3s~ 2. It should be noted that for a 10 ‘ ‘ . . ‘ ‘ . ‘ ‘
human body, the consideration of its complicated joints and -0 05 00 05 10 | 1'5M 20 25 30 85 40
uneven density may cause variation @faround the value, o9
ymgl/i2l, or even lead to a complicated function fer -65

(2) It is not straightforward to represent how a person’s
nervous system processes a signal. Here, we consider thi
whole nervous system as a “black box” so that we can con-
centrate on the analysis of possible output from it. The out-
put from the black box must lead to negative feedback with
a delay in order to balance the human body. The negative~
feedback may be described hgtanix(t—7)], where B o
(<0) is the feedback coefficient, andrepresents the delay. &
tanh§), widely used in neural networkE7], represents a
smoothed on switch for feedback when displacement occurs,
and it is known as a standard transfer function. For a normal
person,r is estimated to be between 300 and 800[85].

(3) All perturbations are represented by white noise,
yn(t), where y is the magnitude of the noise, satisfying 10 : s ‘ : : : ‘ : :
<77(t)>:01 and(n(t) n(t’))zb‘(t—t'). =10 -05 00 05 10 Io1g.5 . 20 25 30 35 40

Summarizing the above discussions leads to a model for "
human postural control system:

g5k B=-1.6,7=0.001,1=04

¢}

_95F o =158, §=-1.6 v =0.001

X(t)=ax(t)+ Btanix(t— )]+ yn(t). (1)

Equation(1) describes the dynamic behavior of the individu-
al's center of gravit COG) in the transverse plane. COP is
the projection of COG on the platform where the individual
stands wherx<1. Therefore, COG is the same as COP ex-
cept in different planes.

Now in order to make a comparison between the solution 2
of model (1) and the experimental data, we may apply a
numerical simulation to find the solution of systdf) and
then use the solution to plot the functid(At). Figures
1(a—0 show the simulation results d(At) for different
values of the coefficients. There the slope of {}aAt) ‘ ‘ , ‘ ‘ ‘ , ‘ ‘
versus logy(At) equals M. Figure Xa) shows that, similar -10 -05 00 05 10 15 20 25 30 35 40
to the experimental resylt], there exists a larger interval of log,o A1
negative feedback.e., 0<H<0.5) whena approaches$g|
(for exampleax=1.58,8= —1.6). For the curve correspond- _ ) . _ )
ing to @=1.58, when logAt<0, H~0.7 (the dashed line _ FIG. 1. Numerical S|r_nl_JI_at|on of Eq1) for functionC(At) with
shows the average slope in the considered régird when ~UM€ step 0.01, and initial values(t)=0 when te(-7,0],
log;At € (0.3,1.3), H=~0.4. This may indicate that model 10g,C(AY) vs logiAt: (8) a=14, 1.52, 156, 1.58, 1.59%=

. . —1.6, y=0.001, 7=0.4; (b) «=1.58, B=—-1.6, y=0.001, 7
(1) correctly describes some properties of human pOStural—O.Z, 0.3, 0.4, ,0.5, 0.6hote that the interval of negative feedback

contrql. It is found that the length _of the mtgrval for the tends to disappear wher>0.5): (¢) a=1.58, = 1.6, 7=0.4,
negative feedback reduces to 0 quickly whens reduced y=0.001, 0.01, 0.1.

09,,C (At )

o=158 f=-16 1=04
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from [B] (for example,a=1.40, 8= —1.6). Whena is ap- The magnitude ofe; depends on the value of and
proximately equal tdg3|, on the other hand, the equilibrium \yhether or not random resonance appears. i§ small and
state of the system becomes unstafile., COP leaves the g random resonance exists, thermust be small too. For
equilibrium point with almost 100% possibilityFigure 1b)  the model considered in this paper, the higher order form
showsC(At) for different values ofr. It can be observed O(€?) can be neglected. Therefore, by averaging both sides

from this figure that the interval of negative feedback gradu- Eq. (1) over trials, we finally obtairifor white noise
ally reduces to zero asincreases. Finally, Fig.(&) seems to '

suggest that the strength of noise does not have much effect ey _

on the shape of functio@(At). X()=ax(t)+ pranfix(t=r)], @
It is easy to see from Eql) that .the system is more stable where, for simplicity, we have dropped ti notation.

for a smaller value ok whenp is fixed. For example, when

B=—1.6, the model withe=1.40 is more stable than the

model with«=1.58, because a larger value @/« means

a larger negative feedback. However, experimental results It is easy to see from Ed2) thatx=0 is an equilibrium

[1] have shown that the subjects adjust themselves to favagroint of the system. The linearized equation can be written as

larger values ofr (e.g.,«=1.58) as opposed to smaller ones )

(e.g.,a=1.4). Does this mean that people favor instability? u(t)=au(t)+pu(t—1), ©)

To answer the question, we will study a Hopf bifurcation of

system(1) in the next section, to answer this based on theVhich yields the eigenvalue relation,

stability of Hopf bifurcation.

A. Conditions for Hopf bifurcation

A=a+Be M. (4)

In general\ is complex. Let\=a+ib, wherea andb take
IIl. HOPF BIFURCATION real values. Substituting this expression into &y results in

It will be much easier to study Hopf bifurcation of system
(1) if the noise term is not present. In this regard, note that
the noise given in systeifl) is an additive term. According
to Ref.[8], the critical points of the bifurcation for the sys-
tem are independent of the additive noise term. So we may
simply ignore the noise term in E@L), settingy=0. Alter-
natively, we could show thatx(t))=~xge(t), wherex(t) is
the solution of Eq(1) (the notatiory - - -) denotes the aver-
age over trialswhile X4(t) is the deterministic solution of
Eqg. (1) when y=0. The deterministic solution then repre-
sents the average behavior of the stochastic system. and

Suppose that one has made a number of trials, and for the
ith trial, let the solution of Eq(1) bex;(t), which can always 527 _
be written asx;(t) =(x(t))+ €(t), where the terme;(t) is atpeosryp"—a’)=0. @)
produced by the noise term. Obvious{y;)=%;¢;=0. Fur-

a=a+ Be 3 cosbr, (5a)
b=—-pBe @ sinbr. (5b)

Now suppose that syste(@) exhibits a Hopf bifurcation
which occurs ala=0. Settinga=0 in Egs.(5a and (5b)

gives

b=+ B°—a? (6)

If we take 7 as the bifurcation parameter, then it follows

thermore, notice that from Egs.(58 and (5b) that
dx(t)\ d Ja | oa .
at |~ &(X(t» S-=Be (— S.Ta cosbr—bBe 37sinbr (8)
and and
_ -1 2 Ja B —a?
(O ())={((x(1) +n{x(1))" €+ O(€7)) —| = : 9
Tl _, l-ar
=(x(1))"+(O(€D))
It is seen from Eqgs(6) and (9) that when|g|#|a|, we
Since have b#0 and[(da)/(d7)]|a=o#0, which indicates that
system(2) has a Hopf bifurcation wher, 8, and 7 satisfy
tant x(t)]=x(t) — 1x3(t) + - - -, condition(7), and all other eigenvalues given in Ed) have
negative real parts. The latter condition can be satisfied eas-
we obtain ily. For example, whem+ 8<0 and7=0, \ is real and less
than zero. Because 7 is a continuous function of, it is
5 expected that there exists ansuch that all eigenvalues in
(tani x;(t)]) =tanH (x(t))]+(O(€)). Eq. (4) have strictly negative real parts fote [0,€). When
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7=¢, EQ.(4) has a pair of purely imaginary eigenvalues and 0, 6e[—17,0
the remaining still have strictly negative real paffor more Rp=
detail, see Refl9)]). f(p,u), 6=0,

Note thata or B8 can also be taken as the bifurcating
parameter, and the analysis is similar to the above discusvhere
sion. In this paper, we will choose as the bifurcation pa-

rameter since it plays a more important role in the analysis of B&(O+71), Oe[—r1,0),
the dynamical behavior of the system than other parameters E(0,p)=
do. ad(h), 6=0,
B. Stability of Hopf bifurcation and noting thatdu,)/(dt)=(du,)/(d6), we can rewrite Eq.

The method of analyzing the stability of Hopf bifurcation (11) as an equation of one variable:

for delayed differential equations was introduced by Hassard,

Kazarrinoff, and War[10], using normal form theory and U=A(p)u+ R (12)

center manifold theory. The reader is also referred to the N . ] .

recent work by Li, Ruan, and W§®]. At the critical point for Hopf bifurcation,A(0)q(6)
First, we apply Taylor expansion to Eq) to have a =i®od(6), whereq(6d) e[—7,0] is the eigenvector corre-

system including terms up to the third order, which is, insponding to the eigenvalug0) of A(0). Here,wo=b given

general, enough for stability analysis of Hopf bifurcation: Py Ed. (6).
The adjoint operatoA* (0) is defined by

u(t)=au(t)+ Bu(t— 1) — 1 Bud(t— ) +O(u%). (10

dy
Let o be the critical bifurcation value af satisfying Eq(7), s s€(07]
and then denote.= 7— 7. Further, letu,(8)=u(t+6), 6 A* (0)i(s) =
e[—7,0) andL ,u;=au+ Bu(t—7), whereL, is a one-
parameter family of continuouébounded linear operators dé(t,0)(—t), s=0.
defined ad_, :C[ - 7,0]—R. Then it follows from Eq.(10) o7
that
Assumeq* is the eigenvector corresponding to the eigen-

U=LMUt+f(Ut,M) (11) value —iwy of A*(0), then we may obtain
where the operatof(u, ,1):C[ — 7,0]— R contains the non- q(6)=e'“o’,
linear terms, beginning with at least quadratic terms. _

With the Riesz representation theorem, one can prove that g*(s)=De'“s, (13
there exists a function
+ ia)oTo
£(0,m):[—7.0]—R, _ 14pme |
1+ B2+ 2B71cos wgTg)
with bounded variation for each component. Moreover, for
all ¢ C'[—17,0], which, in turn, yields
0 — *
Lub= f d&(0,m) 4(0), 1=(a".q)
J— 0 0 __
— N* _ * —
and in particular, _q (O)q(o) J0—7J§Oq (g 0)d§(0!0)¢(§)d§1
0 _
LMut=f dé(0,u)u(t+0). and{g*,q)=0.
-7 For u, being a solution of Eq(10) at w=0, we define

For our case, by defining 2(t)=(g*,u,)

(;—(Z, Oe[—7,0) and
AWe= WI(t, )= 6) ~ 2()q(6)~Z)q( 6)
SHEREO=Le 620 ~u(6) -2 Rez()q(9)}.
and Then on the manifoldC,, we can find
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W(t,0)=W(z(t),z(t),0)

z _ 2

In fact, z and z are local coordinators fo€y in C in the

directions ofqg* and?, respectively.
For a solutionu, e Cy, Eq.(11) yields

(@*,u)=(q* ,A(0)u,+Ru),
and thus,
2(t) =i wez(t) +q* (0)fo(uy)

=iwez(t)+9(2,2), (14

wherefy(u;) = f(uy)|y=o, and

9(2,2)=09*(0)f(u;,0)

=q*<0>{— §u3<t—ro>

_ g@* (0)[W(z(t),Z(t), 7o)
+2(0)q(~ 1 +20(~ NP
B i z

Z — Z
= gq* (0)| Wy 6) 5 +Wy1(0)zz+Wo( 0) >

3

+--+z()q(— 1 +2z(t)q(—7) (15)
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Now by comparing the coefficients af,zz z2 andz’z in  Equation(17) indicates that Hopf bifurcation of syste(®) is
Eqg. (15) with those in Eq.(16), we obtain always stable ifx<0.

920=911= 902=0,
C. Numerical simulation of Hopf bifurcation

e~ 'wom To verify that the results obtained from the bifurcation

1+ Broe @m0 analysis of systen2) are true for the original systefd), we
use numerical simulation to find the solution of systemin
Finally, the stability of Hopf bifurcation can be deter- the vicinity of the Hopf bifurcation critical point defined by
mined by[10] Eq. (7). Figure 2 shows the time history and power spectrum
of x(t) for different values ok, 8, andr, with a fixed noise
B>=2 Recy(0)}, strengthy=0.0001. The frequencfycan be calculated using
f=(k—1)/1000. The step size and initial conditions are the

921=—2B9* (0)q%(— 70)a(— 70)=—28

and the direction of Hopf bifurcation is determined by

0.1340
_ Refcy(0)} 0.1338
ac Ja ’ 0.1336]-
IT|,_o 0.1334}
o328 THIAMANME~ T~ 7 ot i St e et Al
where x()
0.1330H
€1(0) = 5 (Gaeis- 2l Hood?) + 22
1 200 920911~ 41911]" ~ 31902 5 .
When 8,<0(>0), the Hopf bifurcation is stabl@unstable; o193
whenu,>0(<0), the Hopf bifurcation is supercriticé&ub- 013221
critical). For our model, the stability conditions are given by

320 ! | A 1 A
4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200
t(sec.)

2(a— B%10)
a7 FIG. 3. Windowed time history af(t) taken from Fig. 2d) for

Bo=——(—— >
1-2ary+ 15 0.132<x(t)<0.134.
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a=1.98=—2,r=0.50:(a) y=0.001;(b) y=0.01;(c) y=0.1; and FIG. 5. The critical values ofy under Hopf bifurcation.

(d) y=0.2.

helps the system enter into a stochastically resonant state if
same as that given in Fig. 1. When=1,8=—-2, Eq.(7)  the system is near Hopf bifurcation, or alternatively the os-
gives the critical valuerozq-r/3\/§~0_605, and then it fol- cillations are coopting energy from the noise. However, the
lows from Eqs.(17) and(18) that 8,<<0 andu,>0. There- bifurcation point is not affected even for rather strong noise
fore, the Hopf bifurcation, wher=1, andB= —2, is stable  strength. Thus, we may conclude that the deterministic solu-
and supercritical. When is varied fromr<7 to 7> 79, the  tion of system(2) indeed represents the average behavior of
system will experience a Hopf bifurcation as shown in Fig.system(1) for small .
2. It is observed from the power spectrumxgt) that when
7 approachesry, there exists a relatively large frequency
spectrum neaf = wo/27. This spectrum is not only differ- IV. DISCUSSION AND CONCLUSIONS
ent from that of the deterministic case where there is no
oscillation, but also different from that of white noise case In this paper we have proposed a physiological model for
where there is no dominant frequency. It is noted that, beforéescribing human postural control. The model is a delayed
7 reachesry, noise always destabilize the systédeviating  Stochastic differential equation, which is simple enough for
from the equilibrium, but the system eventually converges Us to analytically study Hopf bifurcation and obtain the ex-
to the equilibrium. The frequency of the oscillation is closeplicit stability conditions. Numerical simulations show that
to that evaluated at the critical point of Hopf bifurcation. the simple model reproduces the behavior of the two-point
However, by comparing the magnitudes of the frequencyautocorrelation functiol©(At), which is obtained from ex-
spectrum ofk(t) for 7= r, with that for 7< 7y, we may find  perimental data. The parameter values for such a function
that the behavior of the system is much more disordere@(At) have been carefully analyzed.
when 7< 7. Therefore, the system indeed exhibits Hopf bi-  The results shown in Fig.(d) indicate that a larger inter-
furcation atr= . The simulation results confirm the ana- val of negative feedback only exists wher<{B|—a<1.
lytic predictions obtained in previous subsections. MoreoverThe critical value of the delay determined from E@) is
it is noted that the amplitudes &ft) become relatively large found asto=arccost- a/8)/\/8%— a?, which suggests that
when 7> 71,5, which agrees with the observation of quiet given a value ofa, 74 increases monotonically as S de-
standing. creases to the value of (see Fig. 5 which shows the situa-
The result that we proved at the beginning of Sec. IlI, i.e.tion whena=1.6). On the other hand, substituting the above
the deterministic solution of systef@) represents the aver- expression ofry into Egs.(17) and (18) yields 8,<0 and
age behavior of the stochastic systéi if the stochastic u,>0, respectively. Therefore, the equilibrium point located
term is additive, is verified numerically as shown in Fig. 3.in the shadowed are@ee Fig. 5 is entirely stable, and the
This figure gives a windowed time history xft) depicted in  Hopf bifurcation shown in Fig. 5 is stable too. However, in
Fig. 2d). The dashed line represents the amplitudeft).  reality, one hopes to avoid Hopf bifurcation because it means
It is clear that the amplitude of(t) stochastically oscillates large amplitude oscillation as shown in Fig. 2. This suggests
around that ofge(t). that the critical value of is better to be as large as possible,
Furthermore, it is interesting to find, from the numerical so that a person can have enough time to react or adjust. In
investigations, how the noise effects Hopf bifurcation. Asother words, the form of functio@(At) obtained from ex-
shown in Fig. 4, the system oscillates more periodically inperimental datd1] corresponds to the case of our model
terms of power when the noise strength is increasing. Noisehen 0<|g|— a<1, which implies that maximum delas,
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helps people to avoid oscillationglopf bifurcation. The  possible oscillationgHopf bifurcation. This capability may
above discussion seems to answer the question raised in the learned and it may be affected by disease. It may also be
introduction, leading to the following conclusion: Human possible to diagnose some disease by studying the COP of
postural control seems to be an optimal process to avoithe subjec{11].
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