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Delayed stochastic differential model for quiet standing

W. Yao, P. Yu, and C. Essex
Applied Mathematics Department, University of Western Ontario, London, Ontario, Canada N6A 5B7

~Received 3 July 2000; published 10 January 2001!

A physiological quiet standing model, described by a delayed differential equation, subject to a white noise
perturbation, is proposed to study the postural control system of human beings. It has been found that the white
noise destabilizes the equilibrium state, and inertia accelerates the destabilizing process, and that the position
of a person is detected and processed by the person’s nervous system with a delay. This paper focuses on the
analysis of Hopf bifurcation and its stability in this context. Based on the analytical predictions confirmed by
numerical simulations, it has been shown that the posture of a person is controlled in such a way that possible
amplitude oscillations are minimized.
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I. INTRODUCTION

Standing quietly appears to the eye as a simple matte
being inert or at rest. However, precise measurements re
that it actually involves complex dynamical motions, whi
are too small for the eye to see. Thus the simple act
standing is revealed to be a complex control problem,
volving both physiological and psychological processes.
cent studies on quiet standing posture experimental d
measuring the trajectory of the center of pressure~COP! un-
der the feet of quietly standing subjects, show that the
havior of young healthy subjects is like colored noise@1#. It
has been found that the two-point autocorrelation function
the anteroposterior~front-to-back! direction, y, defined by
C(Dt)5^(y(t)2y(t2Dt))2& is proportional to (Dt)2H,
where the value ofH defines three different dynamic re
gimes:

HH .0.5 for 0<Dt<Dt1

,0.5 for Dt1,Dt<Dt2

'0.0 for Dt.Dt2 ,

where Dt1 and Dt2 are observed values. One can use
values ofH to determine whether or not the analyzed d
are correlated. For example, a classical random walk co
sponds toH50.5, while H.0.5 andH,0.5 indicate posi-
tive and negative correlations, respectively@1#. From the
control point of view, these observations suggest that q
standing posture may thus be explained as follows: wit
some time~e.g., the subject’s reaction time!, small deviations
grow, and are suppressed by a negative feedback on la
time scale.

Experimental models have been proposed to study q
standing, and in particular, a similar shape of the funct
C(Dt) has been obtained by adjusting parameters in
models proposed in Refs.@2,3#. Chow and Collins@2# used
the transverse motion of an elastically pinned polymer
simulate human postural movements. This model can be
scribed by a driven stochastic partial differential equati
when the polymer is perturbed by a noise forcing functio
The noise is colored but its correlation is so simple that
differential equation can be treated analytically. It has be
1063-651X/2001/63~2!/021902~8!/$15.00 63 0219
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shown that the form of the autocorrelation function for t
pinned polymer model is similar to the functionC(Dt), char-
acterized by the three indicated regimes. Thus, the beha
of the highly evolved and complicated human postural c
trol system can be simply, yet realistically, described by
linear system. This model is also suitable for studying a p
turbed human postural control system@4#. The work of Ohira
and Milton @3# has shown that human postural control can
described by an even simpler model—delayed rand
walks. Delay means a walker moves to the left or right, s
based on the walker’s position at some previous times. T
model is based on the natural delay in the nervous ac
process, and the behavior of the COP is like colored no
The dynamical behavior of the resulting model also agr
with the characteristic~shape! of function C(Dt).

Why doesC(Dt) exhibit such a shape? What advantag
would a person get from the behavior implied by its shap
To our knowledge, no publications have addressed s
questions. To answer them, we propose a simplified ph
ological model in this paper, utilizing a delayed stochas
nonlinear differential equation.

Section II presents the model. Section III considers Ho
bifurcation and its stability conditions. Discussions and co
clusions are given in Sec. IV.

II. MODEL

A rough description of quiet standing process will he
construct a model. Imagine a person standing still in a qu
stable state, and then consider some disturbances leadi
some very complicated perturbations. Some natural dis
bances would be the beating of a person’s heart, the con
tion of the stomach, etc. Such perturbations would cause
person’s position to move away from the original stab
equilibrium. When the initial displacement is too small f
the person to feel, no adjustment to posture happens. H
ever, as the displacement grows, due to the inertia and
loss of stability of the gravity center, the displacement
eventually detected and the nervous system reacts to stab
the person’s body. The process is like this: equilibrium→ a
perturbation→ growing deviation→ nervous system re
sponse→ correction→ equilibrium → new perturbation
→•••. Therefore, we may build our model with three par
©2001 The American Physical Society02-1
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W. YAO, P. YU, AND C. ESSEX PHYSICAL REVIEW E63 021902
~1! the positive feedback of the mechanical body;~2! the
negative feedback of the conscious control; and~3! the noise
~perturbation!. More detailed descriptions of the three pa
are given below.

~1! The mechanics of a human body is often described
an inverted linear pendulum@5,6#. Let x(t) represent the
transverse displacement of the gravity center of the pen
lum at timet, and supposex(t)! l , the length of the pendu
lum. Then we may write the following differential equatio

ẋ~ t !5ax~ t !,

wherea'Amgl/2I , mg and I are the weight and the mo
ment of inertia of the pendulum, respectively. For examp
if l 5170 cm, thena'3s21. It should be noted that for a
human body, the consideration of its complicated joints a
uneven density may cause variation ofa around the value,
Amgl/2I , or even lead to a complicated function fora.

~2! It is not straightforward to represent how a perso
nervous system processes a signal. Here, we conside
whole nervous system as a ‘‘black box’’ so that we can c
centrate on the analysis of possible output from it. The o
put from the black box must lead to negative feedback w
a delay in order to balance the human body. The nega
feedback may be described byb tanh@x(t2t)#, where b
(,0) is the feedback coefficient, andt represents the delay
tanh(x), widely used in neural networks@7#, represents a
smoothed on switch for feedback when displacement occ
and it is known as a standard transfer function. For a nor
person,t is estimated to be between 300 and 800 ms@3,5#.

~3! All perturbations are represented by white nois
gh(t), where g is the magnitude of the noise, satisfyin
^h(t)&50, and^h(t)h(t8)&5d(t2t8).

Summarizing the above discussions leads to a mode
human postural control system:

ẋ~ t !5ax~ t !1b tanh@x~ t2t!#1gh~ t !. ~1!

Equation~1! describes the dynamic behavior of the individ
al’s center of gravity~COG! in the transverse plane. COP
the projection of COG on the platform where the individu
stands whenx! l . Therefore, COG is the same as COP e
cept in different planes.

Now in order to make a comparison between the solut
of model ~1! and the experimental data, we may apply
numerical simulation to find the solution of system~1! and
then use the solution to plot the functionC(Dt). Figures
1~a–c! show the simulation results ofC(Dt) for different
values of the coefficients. There the slope of log10C(Dt)
versus log10(Dt) equals 2H. Figure 1~a! shows that, similar
to the experimental result@1#, there exists a larger interval o
negative feedback~i.e., 0,H,0.5) whena approachesubu
~for example,a51.58,b521.6). For the curve correspond
ing to a51.58, when log10Dt,0, H'0.7 ~the dashed line
shows the average slope in the considered region!, and when
log10DtP(0.3,1.3), H'0.4. This may indicate that mode
~1! correctly describes some properties of human post
control. It is found that the length of the interval for th
negative feedback reduces to 0 quickly whena is reduced
02190
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FIG. 1. Numerical simulation of Eq.~1! for functionC(Dt) with
time step 0.01, and initial valuesx(t)50 when tP(2t,0#,
log10C(Dt) vs log10Dt: ~a! a51.4, 1.52, 1.56, 1.58, 1.592,b5
21.6, g50.001, t50.4; ~b! a51.58, b521.6, g50.001, t
50.2, 0.3, 0.4, ,0.5, 0.6~note that the interval of negative feedbac
tends to disappear whent.0.5); ~c! a51.58, b521.6, t50.4,
g50.001, 0.01, 0.1.
2-2
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DELAYED STOCHASTIC DIFFERENTIAL MODEL FOR . . . PHYSICAL REVIEW E 63 021902
from ubu ~for example,a51.40,b521.6). Whena is ap-
proximately equal toubu, on the other hand, the equilibrium
state of the system becomes unstable~i.e., COP leaves the
equilibrium point with almost 100% possibility!. Figure 1~b!
showsC(Dt) for different values oft. It can be observed
from this figure that the interval of negative feedback gra
ally reduces to zero ast increases. Finally, Fig. 1~c! seems to
suggest that the strength of noise does not have much e
on the shape of functionC(Dt).

It is easy to see from Eq.~1! that the system is more stab
for a smaller value ofa whenb is fixed. For example, when
b521.6, the model witha51.40 is more stable than th
model witha51.58, because a larger value ofubu/a means
a larger negative feedback. However, experimental res
@1# have shown that the subjects adjust themselves to fa
larger values ofa ~e.g.,a51.58) as opposed to smaller on
~e.g.,a51.4). Does this mean that people favor instabilit
To answer the question, we will study a Hopf bifurcation
system~1! in the next section, to answer this based on
stability of Hopf bifurcation.

III. HOPF BIFURCATION

It will be much easier to study Hopf bifurcation of syste
~1! if the noise term is not present. In this regard, note t
the noise given in system~1! is an additive term. According
to Ref. @8#, the critical points of the bifurcation for the sys
tem are independent of the additive noise term. So we m
simply ignore the noise term in Eq.~1!, settingg50. Alter-
natively, we could show that̂x(t)&'xdet(t), wherex(t) is
the solution of Eq.~1! ~the notation̂ •••& denotes the aver
age over trials! while xdet(t) is the deterministic solution o
Eq. ~1! when g50. The deterministic solution then repre
sents the average behavior of the stochastic system.

Suppose that one has made a number of trials, and fo
i th trial, let the solution of Eq.~1! bexi(t), which can always
be written asxi(t)5^x(t)&1e i(t), where the terme i(t) is
produced by the noise term. Obviously,^e i&5( ie i50. Fur-
thermore, notice that

K dxi~ t !

dt L 5
d

dt
^x~ t !&

and

^~xi~ t !!n&5^^x~ t !&n1n^x~ t !&n21e i1O~e i
2!&

5^x~ t !&n1^O~e i
2!&

Since

tanh@x~ t !#5x~ t !2 1
3 x3~ t !1•••,

we obtain

^tanh@xi~ t !#&5tanh@^x~ t !&#1^O~e i
2!&.
02190
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The magnitude ofe i depends on the value ofg and
whether or not random resonance appears. Ifg is small and
no random resonance exists, thene i must be small too. For
the model considered in this paper, the higher order fo
O(e i

2) can be neglected. Therefore, by averaging both si
of Eq. ~1! over trials, we finally obtain~for white noise!

ẋ~ t !5ax~ t !1b tanh@x~ t2t!#, ~2!

where, for simplicity, we have dropped the^& notation.

A. Conditions for Hopf bifurcation

It is easy to see from Eq.~2! that x50 is an equilibrium
point of the system. The linearized equation can be written

u̇~ t !5au~ t !1bu~ t2t!, ~3!

which yields the eigenvalue relation,

l5a1be2lt. ~4!

In general,l is complex. Letl5a1 ib, wherea andb take
real values. Substituting this expression into Eq.~4! results in

a5a1be2at cosbt, ~5a!

b52be2at sinbt. ~5b!

Now suppose that system~2! exhibits a Hopf bifurcation
which occurs ata50. Settinga50 in Eqs. ~5a! and ~5b!
gives

b56Ab22a2 ~6!

and

a1b cos~tAb22a2!50. ~7!

If we take t as the bifurcation parameter, then it follow
from Eqs.~5a! and ~5b! that

]a

]t
5be2atS 2

]a

]t
t2aD cosbt2bbe2at sinbt ~8!

and

]a

]t U
a50

5
b22a2

12at
. ~9!

It is seen from Eqs.~6! and ~9! that whenubu5” uau, we
have b5” 0 and @(]a)/(]t)#ua505” 0, which indicates that
system~2! has a Hopf bifurcation whena, b, andt satisfy
condition~7!, and all other eigenvalues given in Eq.~4! have
negative real parts. The latter condition can be satisfied
ily. For example, whena1b,0 andt50, l is real and less
than zero. Becausee2lt is a continuous function oft, it is
expected that there exists ane such that all eigenvalues in
Eq. ~4! have strictly negative real parts fortP@0,e). When
2-3
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W. YAO, P. YU, AND C. ESSEX PHYSICAL REVIEW E63 021902
t5e, Eq. ~4! has a pair of purely imaginary eigenvalues a
the remaining still have strictly negative real parts.~For more
detail, see Ref.@9#!.

Note thata or b can also be taken as the bifurcatin
parameter, and the analysis is similar to the above dis
sion. In this paper, we will chooset as the bifurcation pa-
rameter since it plays a more important role in the analysi
the dynamical behavior of the system than other parame
do.

B. Stability of Hopf bifurcation

The method of analyzing the stability of Hopf bifurcatio
for delayed differential equations was introduced by Hass
Kazarrinoff, and Wan@10#, using normal form theory and
center manifold theory. The reader is also referred to
recent work by Li, Ruan, and Wei@9#.

First, we apply Taylor expansion to Eq.~2! to have a
system including terms up to the third order, which is,
general, enough for stability analysis of Hopf bifurcation:

u̇~ t !5au~ t !1bu~ t2t!2 1
3 bu3~ t2t!1O~u4!. ~10!

Let t0 be the critical bifurcation value oft satisfying Eq.~7!,
and then denotem5t2t0. Further, letut(u)5u(t1u), u
P@2t,0) and Lmut5au1bu(t2t), where Lm is a one-
parameter family of continuous~bounded! linear operators
defined asLm :C@2t,0#→R. Then it follows from Eq.~10!
that

u̇5Lmut1 f ~ut ,m!, ~11!

where the operatorf (ut ,m):C@2t,0#→R contains the non-
linear terms, beginning with at least quadratic terms.

With the Riesz representation theorem, one can prove
there exists a function

j~u,m!:@2t,0#→R,

with bounded variation for each component. Moreover,
all fPC1@2t,0#,

Lmf5E
2t

0

dj~u,m!f~u!,

and in particular,

Lmut5E
2t

0

dj~u,m!u~ t1u!.

For our case, by defining

A~m!f55
df

du
, uP@2t,0!

E
2t

0

dj~s,m!f~s![Lmf, u50,

and
02190
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Rf5H 0, uP@2t,0!

f ~f,m!, u50,

where

j~u,m!5H bd~u1t!, uP@2t,0!,

ad~u!, u50,

and noting that (dut)/(dt)5(dut)/(du), we can rewrite Eq.
~11! as an equation of one variable:

u̇t5A~m!ut1Rut . ~12!

At the critical point for Hopf bifurcation,A(0)q(u)
5 iv0q(u), whereq(u)P@2t,0# is the eigenvector corre
sponding to the eigenvaluel(0) of A(0). Here,v05b given
by Eq. ~6!.

The adjoint operatorA* (0) is defined by

A* ~0!c~s!55 2
dc

ds
, sP~0,t#

E
2t

0

dj~ t,0!c~2t !, s50.

Assumeq* is the eigenvector corresponding to the eige
value2 iv0 of A* (0), then we may obtain

q~u!5eiv0u,

q* ~s!5Deivs, ~13!

D5
11bt0eiv0t0

11b2t212bt cos~v0t0!
,

which, in turn, yields

15^q* ,q&

[q̄* ~0!q~0!2E
u52t

0 E
j50

u

q̄* ~j2u!dj~u,0!f~j!dj,

and ^q* ,q̄&50.
For ut being a solution of Eq.~10! at m50, we define

z~ t !5^q* ,ut&

and

W~ t,u!5ut~u!2z~ t !q~u!2 z̄~ t !q̄~u!

5ut~u!22 Re$z~ t !q~u!%.

Then on the manifoldC0, we can find
2-4
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FIG. 2. Time history and power spectrum o
x(t) for: ~a! a51,b522,t50.6; ~b! the same as
~a! except that t50.62; ~c! a51.9,b522,t
50.5; ~d! the same as~c! except thatt50.51;~e!
a521,b522,t51.2; and ~f! the same as~e!
except thatt51.22.
W~ t,u!5W~z~ t !,z̄~ t !,u!

5W20~u!
z2

2
1W11~u!zz̄1W02~u!

z̄2

2
1•••.

In fact, z and z̄ are local coordinators forC0 in C in the
directions ofq* and q̄* , respectively.

For a solutionutPC0, Eq. ~11! yields

^q* ,u̇t&5^q* ,A~0!ut1Rut&,

and thus,

ż~ t !5 iv0z~ t !1q̄* ~0! f 0~ut!

5 iv0z~ t !1g~z,z̄!, ~14!
02190
where f 0(ut)5 f (ut)uu50, and

g~z,z̄!5q̄* ~0! f ~ut,0!

5q̄* ~0!F2
b

3
u3~ t2t0!G

52
b

3
q̄* ~0!@W~z~ t !,z̄~ t !,t0!

1z~ t !q~2t!1 z̄~ t !q̄~2t!#3

52
b

3
q̄* ~0!FW20~u!

z2

2
1W11~u!zz̄1W02~u!

z̄2

2

1•••1z~ t !q~2t!1 z̄~ t !q̄~2t!G3

~15!
2-5
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FIG. 2. ~Continued!.
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5g20

z2

2
1g11zz̄1g02

z̄2

2
1g21

z2z̄

2
1•••. ~16!

Now by comparing the coefficients ofz2,zz̄, z̄2 and z2z̄ in
Eq. ~15! with those in Eq.~16!, we obtain

g205g115g0250,

g21522bq̄* ~0!q2~2t0!q̄~2t0!522b
e2 iv0t0

11bt0e2 iv0t0
.

Finally, the stability of Hopf bifurcation can be deter
mined by@10#

b252 Re$c1~0!%,

and the direction of Hopf bifurcation is determined by

m252
Re$c1~0!%

]a

]tU
a50

,

where

c1~0!5
i

2v0
~g20g1122ug11u22 1

3 ug02u2!1
g21

2
.

Whenb2,0(.0), the Hopf bifurcation is stable~unstable!;
whenm2.0(,0), the Hopf bifurcation is supercritical~sub-
critical!. For our model, the stability conditions are given b

b25
2~a2b2t0!

122at01b2t0
2

, ~17!
02190
m252
~a2b2t0!~12at0!

~122at01b2t0
2!~b22a2!

. ~18!

Equation~17! indicates that Hopf bifurcation of system~2! is
always stable ifa<0.

C. Numerical simulation of Hopf bifurcation

To verify that the results obtained from the bifurcatio
analysis of system~2! are true for the original system~1!, we
use numerical simulation to find the solution of system~1! in
the vicinity of the Hopf bifurcation critical point defined b
Eq. ~7!. Figure 2 shows the time history and power spectr
of x(t) for different values ofa, b, andt, with a fixed noise
strengthg50.0001. The frequencyf can be calculated using
f 5(k21)/1000. The step size and initial conditions are t

FIG. 3. Windowed time history ofx(t) taken from Fig. 2~d! for
0.132<x(t)<0.134.
2-6
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DELAYED STOCHASTIC DIFFERENTIAL MODEL FOR . . . PHYSICAL REVIEW E 63 021902
same as that given in Fig. 1. Whena51,b522, Eq. ~7!
gives the critical valuet05p/3A3'0.605, and then it fol-
lows from Eqs.~17! and~18! that b2,0 andm2.0. There-
fore, the Hopf bifurcation, whena51, andb522, is stable
and supercritical. Whent is varied fromt,t0 to t.t0, the
system will experience a Hopf bifurcation as shown in F
2. It is observed from the power spectrum ofx(t) that when
t approachest0, there exists a relatively large frequenc
spectrum nearf 05v0/2p. This spectrum is not only differ-
ent from that of the deterministic case where there is
oscillation, but also different from that of white noise ca
where there is no dominant frequency. It is noted that, be
t reachest0, noise always destabilize the system~deviating
from the equilibrium!, but the system eventually converg
to the equilibrium. The frequency of the oscillation is clo
to that evaluated at the critical point of Hopf bifurcatio
However, by comparing the magnitudes of the frequen
spectrum ofx(t) for t>t0 with that for t,t0, we may find
that the behavior of the system is much more disorde
whent,t0. Therefore, the system indeed exhibits Hopf
furcation att5t0. The simulation results confirm the an
lytic predictions obtained in previous subsections. Moreov
it is noted that the amplitudes ofx(t) become relatively large
when t.t0, which agrees with the observation of qui
standing.

The result that we proved at the beginning of Sec. III, i.
the deterministic solution of system~2! represents the aver
age behavior of the stochastic system~1! if the stochastic
term is additive, is verified numerically as shown in Fig.
This figure gives a windowed time history ofx(t) depicted in
Fig. 2~d!. The dashed line represents the amplitude ofxdet(t).
It is clear that the amplitude ofx(t) stochastically oscillates
around that ofxdet(t).

Furthermore, it is interesting to find, from the numeric
investigations, how the noise effects Hopf bifurcation.
shown in Fig. 4, the system oscillates more periodically
terms of power when the noise strength is increasing. No

FIG. 4. Power spectrum ofx(t) at different noise strength fo
a51.9,b522,t50.50:~a! g50.001;~b! g50.01;~c! g50.1; and
~d! g50.2.
02190
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helps the system enter into a stochastically resonant sta
the system is near Hopf bifurcation, or alternatively the o
cillations are coopting energy from the noise. However,
bifurcation point is not affected even for rather strong no
strength. Thus, we may conclude that the deterministic s
tion of system~2! indeed represents the average behavior
system~1! for small g.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have proposed a physiological model
describing human postural control. The model is a dela
stochastic differential equation, which is simple enough
us to analytically study Hopf bifurcation and obtain the e
plicit stability conditions. Numerical simulations show th
the simple model reproduces the behavior of the two-po
autocorrelation functionC(Dt), which is obtained from ex-
perimental data. The parameter values for such a func
C(Dt) have been carefully analyzed.

The results shown in Fig. 1~a! indicate that a larger inter
val of negative feedback only exists when 0,ubu2a!1.
The critical value of the delay determined from Eq.~7! is
found ast05arccos(2a/b)/Ab22a2, which suggests tha
given a value ofa, t0 increases monotonically as2b de-
creases to the value ofa ~see Fig. 5 which shows the situa
tion whena51.6). On the other hand, substituting the abo
expression oft0 into Eqs.~17! and ~18! yields b2,0 and
m2.0, respectively. Therefore, the equilibrium point locat
in the shadowed area~see Fig. 5! is entirely stable, and the
Hopf bifurcation shown in Fig. 5 is stable too. However,
reality, one hopes to avoid Hopf bifurcation because it me
large amplitude oscillation as shown in Fig. 2. This sugge
that the critical value oft0 is better to be as large as possib
so that a person can have enough time to react or adjus
other words, the form of functionC(Dt) obtained from ex-
perimental data@1# corresponds to the case of our mod
when 0,ubu2a!1, which implies that maximum delayt0

FIG. 5. The critical values oft0 under Hopf bifurcation.
2-7



n
n
o

o be
P of

W. YAO, P. YU, AND C. ESSEX PHYSICAL REVIEW E63 021902
helps people to avoid oscillations~Hopf bifurcation!. The
above discussion seems to answer the question raised i
introduction, leading to the following conclusion: Huma
postural control seems to be an optimal process to av
s.

02190
the

id

possible oscillations~Hopf bifurcation!. This capability may
be learned and it may be affected by disease. It may als
possible to diagnose some disease by studying the CO
the subject@11#.
-
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